MTH 301: Group Theory

Assignment IV: Alternating groups, Composition Series, Derived Series, and Solvable Groups

Practice assignment

1. Show that there exists no proper subgroup of A_{4} generated by an element of order 2 and an element of order 3 .
2. Show that for $n \geq 5, S_{n}$ has no proper normal subgroups besides A_{n}.
3. Show that for $n \geq 3, A_{n}$ contains a subgroup isomorphic to S_{n-2}.
4. Prove that no subgroup of S_{4} is isomorphic to Q_{8}.
5. If σ and τ are 3 -cycles in S_{n}, when show that $\langle\sigma, \tau\rangle$ is isomorphic to $\mathbb{Z}_{3}, A_{4}, A_{5}$, or $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$.
6. Show that A_{4} is solvable.
7. Establish the assertion in 7.1 (iii) of the Lesson Plan.
8. Describe all composition series' for D_{8} and Q_{8}.
9. Show that the quotient group of a solvable group is solvable.
10. Let G be a solvable groups and $H \unlhd G$ be a non-trivial subgroup. Show that there exists a non-trivial abelian subgroup A of H such that $A \unlhd G$.
11. Without using the Feit-Thompson Theorem, show that the following statements are equivalent.
(a) Every group of odd order is solvable.
(b) Then only simple groups of odd order are of prime order.

Problems for submission

(Due 03/11/2023)

- Solve problems $2,7,9$, and 11 from the practice problems above.

