MTH 301: Group Theory

Assignment IV: Alternating groups, Composition Series, Derived Series, and Solvable Groups

Practice assignment

- 1. Show that there exists no proper subgroup of A_4 generated by an element of order 2 and an element of order 3.
- 2. Show that for $n \ge 5$, S_n has no proper normal subgroups besides A_n .
- 3. Show that for $n \geq 3$, A_n contains a subgroup isomorphic to S_{n-2} .
- 4. Prove that no subgroup of S_4 is isomorphic to Q_8 .
- 5. If σ and τ are 3-cycles in S_n , when show that $\langle \sigma, \tau \rangle$ is isomorphic to \mathbb{Z}_3, A_4, A_5 , or $\mathbb{Z}_3 \times \mathbb{Z}_3$.
- 6. Show that A_4 is solvable.
- 7. Establish the assertion in 7.1 (iii) of the Lesson Plan.
- 8. Describe all composition series' for D_8 and Q_8 .
- 9. Show that the quotient group of a solvable group is solvable.
- 10. Let G be a solvable groups and $H \trianglelefteq G$ be a non-trivial subgroup. Show that there exists a non-trivial abelian subgroup A of H such that $A \trianglelefteq G$.
- 11. Without using the Feit-Thompson Theorem, show that the following statements are equivalent.
 - (a) Every group of odd order is solvable.
 - (b) Then only simple groups of odd order are of prime order.

Problems for submission

(Due 03/11/2023)

• Solve problems 2, 7, 9, and 11 from the practice problems above.